

DIFFERENTIAL PRESSURE CONTROL VALVES - TD100/101

SPECIFICATIONS

DN mm DN25 -	DN50
DN inch 1" - 2"	
Temperature -10°C t	o 120°C
Type of body F / F	
Application Cold/h	ot water, Glycol solution concentration < 50%
Connection Thread	led ISO 7-1 BSP
Test EN 122 tightne	66-2 (Test body safety and tightness, Test seat ess)
Options Other	specifications on request

ADVANTAGES

Digital Handwheel

The DP can be set by rotating the handwheel and the number on handwheel can show the cycles which is easy for operation and convenient for debugging and recording.

Build-in Diaphragm Capsule

The valve adopts the build-in diaphragm capsule which could make the valve smaller and significantly avoid damaging during installation.

Closing the test plug can avoid the tube from blocking during washing pipes. During normal use, keep the test plug open so as to achieve the balancing function of the valve.

Stainless Steel Test Plug

There are stainless steel higher/lower test plugs on the valve body, which have higher strength and not easy to be damaged.

Type PN16	Type PN25	▲Pset	Calibier [in.]	DN [mm]	Kvs [m³/h]
TYL25-2VTC-30	TYL25-2VTD-30	5~30kPa	1"	25	4.5
TYL25-2VTC-70	TYL25-2VTD-70	25~70kPa	1"	25	4.5
TYL32-2VTC-30	TYL32-2VTD-30	5~30kPa	1-1/4"	32	8
TYL32-2VTC-70	TYL32-2VTD-70	25~70kPa	1-1/4"	32	8
TYL40-2VTC-30	TYL40-2VTD-30	5~30kPa	1-1/2"	40	14
TYL40-2VTC-70	TYL40-2VTD-70	25~70kPa	1-1/2"	40	14
TYL50-2VTC-30	TYL50-2VTD-30	5~30kPa	2"	50	21
TYL50-2VTC-70	TYL50-2VTD-70	25~70kPa	2"	50	21

OPERATING INSTRUCTION

Description of spare parts number: (1) Capillary pipe, (2) 3-port test plug, (3) Air hole plug, (4) (5) test plugs, (6) Handwheel

The 1st step: Connect capillary pipe (1). As shown on the left, one end of capillary pipe connects DPCV, the other end connects low end of Static balancing valve through the 3-port test plug (2), at this time, system should be in a state of low pressure.

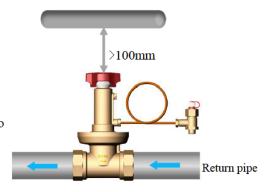
The 2nd step: Open the valve air hole plug (3), then open the 3-port test plug (2), until there is water flow out, lock the air hole plug after all the air in the valve body is discharged.

The 3rd step: As shown on the left, use a digital DP meter to measure the DP on both P2, P3 ends, that is Δ Pset.

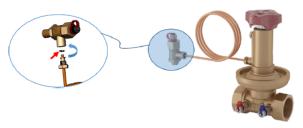
The 4th step: Set ΔP set, the DP can be set by rotating the handwheel (6), accurately adjust can be made according to the data of digital DP meter. Test plugs (4) (5): Remove the cover and insert probe into self-sealing test plugs.

(4) is the High Pressure End, (5) is the Low Pressure End.

Capillary pipe (1): the factory default length is 1m, if longer one is needed, 2m capillary pipe is optional.

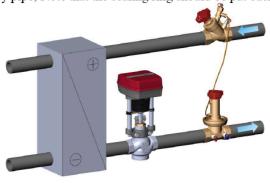


Attention! Must use matched capillary pipe.



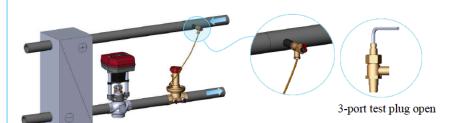
Note:

- DPCV must be installed on the return pipe.
- 2. Pay attention to the medium flow direction, which is consistent with the flow mark on the valve body!
- 3. Valve installation should be reserved enough space, easy to debug and maintenance.


- When there is a static balance valve in the system, the 3-port test plug is connected to the low pressure end of the static balancing valve (i.e. replacing the blue test plug on the static balance valve). The installation steps are as follows:
 - 1. Use the S14 wrench to remove the 3-port test plug, don't discard the sealing ring at the red arrow!

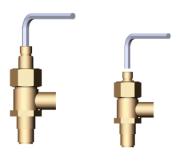
2. Use the S14 wrench to remove the blue test plug at the low pressure end of the static balancing valve.

3. Open the 3-port test plug of DPCV and screw it into the low pressure end of the static balancing valve. After the 3-port test plug is installed, tighten it and capillary pipe; Note that the sealing ring should be put back in place!



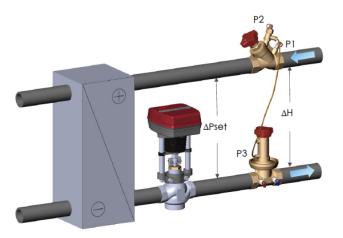
If there is no static balancing valve in the system, the 3-port test plug should be directly connected to the pipe through the weld tube. The installation steps are as follows:

Make a hole of φ 20 in the pipeline, and weld the tube on the pipeline; then screw the 3-port test plug into the weld tube and tighten it with the capillary pipe. Finally, open the 3-port test plug

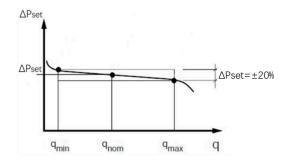

- 1. The 3-port test plug can't be welded directly on the pipe, high temperature will damage the internal parts during welding, welding tube and pipe must be welded first, then connect the 3-port test plug.
- 2. The pressure hole should be taken from the horizontal side of the pipeline center line, and shouldn't be placed at the upper or lower end of the pipeline. The upper end installation may lead to the inaccurate pressure taking if pipeline is not full flow, the lower end installation may cause the pressure pipe is blocked by dirt.

DEBUGGING INSTRUCTION

Note:


- 1. Check whether the valve is in a fully open state before the water and pressure test of the pipeline, you can use a hexagonal wrench to counterclockwise tighten it and the valve is fully open. Usually the factory default state is fully open.
- 2. Make sure that the 3-port test plug is installed on the low pressure end of the static balancing valve and it is in the open state. See Step 1 for details!
- 3. Rotate the handwheel counterclockwise to the Max. DP set value to prevent the valve closed when the pressure is too high during pressure test.
- 4. Exhaust all the air in the valve body before debugging. See Step 2 for details!
- 1. Before debugging, open the 3-port test plug, turn the Allen wrench (5mm) counterclockwise to open it
- 2. Water exhaust: open the plug of valve air hole until a continuous water column is discharged, the exhaust is finished and close the plug.

3. Use the hydraulic debugging instrument to measure the DP between P2 and P3, insert the measuring probe into the test plugs of the DPCV, rotate the handwheel, observe the DP on the instrument, and adjust the set DP; When Δ H > 2 * Δ Pset, DPCV starts to work



Counterclockwise, increase the set DP

Clockwise, decrease the set DP

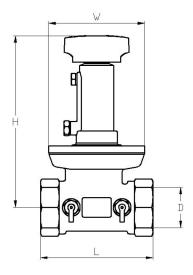
WORKING RANGE

Type selection

- 1. Select the desired $\Delta Pset$ from the tables.
- 2. Select the same size of the valve as the pipe.
- 3. Check the desired flow is smaller than the specified q_{max} , if not, select the most similar large dimension, or a larger ΔP set The table work in the following situation:

 $\Delta H \ge 2*\Delta Pset$, the valve will work effectively from $2*\Delta Pset$ to $250kPa+\Delta Pset$

$$\begin{split} \Delta Pset: \, 5{\sim}30kPa \\ q_{min}/q_{nom}/q_{max}(m^3/h) \end{split}$$


ΔPset		5 (kPa)			15 (kPa)		20 (kPa)			25 (kPa)			30 (kPa)	
DN	qmin	qnom	qmax	qmin	qnom	qmax	qmin	qnom	qmax	qmin	qnom	qmax	qmin	qnom	qmax
25	0.12	1.02	1.38	0.25	1.68	2.25	0.31	1.94	2.74	0.35	2.31	3.24	0.42	2.52	3.53
32	0.22	1.79	2.53	0.27	2.84	4.06	0.32	3.28	4.86	0.41	3.85	5.42	0.48	4.35	6.14
40	0.26	2.84	4.03	0.45	5.23	7.23	0.52	6.14	8.42	0.61	6.85	9.14	0.69	7.32	10.23
50	0.46	4.62	6.32	0.63	8.21	11.42	0.71	9.54	13.16	0.82	10.63	14.86	0.92	11.52	16.23

 $\begin{array}{l} \Delta Pset \ : \ 25{\sim}70kPa \\ \\ q_{min}/q_{nom}/q_{max}(m^3/h) \end{array}$

ΔPset		25 (kPa)			30 (kPa)			40 (kPa)			50 (kPa)	
DN	qmin	qnom	qmax									
25	0.32	2.33	3.27	0.44	2.56	3.57	0.54	2.93	4.18	0.59	3.37	4.72
32	0.34	4.11	5.46	0.46	4.54	6.24	0.63	5.14	7.16	0.78	5.73	8.06
40	0.53	7.06	9.75	0.56	7.62	10.35	0.67	8.65	12.19	0.82	8.83	13.86
50	0.75	10.83	14.86	0.84	11.82	16.32	0.98	13.7	19.13	1.13	15.02	20.96

ΔPset		60 (kPa)			70 (kPa)	
DN	qmin	qnom	qmax	qmin	qnom	qmax
25	0.68	3.64	5.12	0.76	3.96	5.52
32	0.83	6.32	8.93	0.91	6.81	9.45
40	10.92	10.54	14.86	1.02	11.55	15.87
50	1.35	16.85	22.86	1.56	17.94	24.83

INSTALLATION DIMENSION

DN [mm]	D	L [mm]	W [mm]	H [mm]	Weight [kg]
DN25	1"	100	98	168	2.14
DN32	1-1/4"	102	98	172	2.35
DN40	1-1/2"	115	98	176	2.77
DN50	2"	125	98	182	3.17

TECHNICAL PARAMETER

• Operating Parameter	
Caliber range	DN25-DN50
Permissible pressure	PN16 or PN25 are optional
DP setting range	5-30kPa or 25-70kPa
Max. working DP	≤250kPa
Connection standard	Female threaded connection (comply with ISO7-1)
Medium temperature	-10~120°C
Applicable medium	Chilled/hot water, glycol solution under<50%
• Spare Parts Material	
Valve body	Brass Hpb59-1
Valve core	Brass
Valve stem	Brass
Diaphragm	EPDM
Handwheel	PA